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1 Introduction

Branes in string/M-Theory are fundamental constituents [1], and of particular relevance to

cosmology [2, 3]. These substances can move freely in the bulk, collide, recoil, reconnect,
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and whereby, among other possibilities, form a brane gas in the early universe [4], or create

an ekpyrotic/cyclic universe [5]. Understanding these processes is fundamental to both

string/M-Theory and their applications to cosmology [6].

Recently, Maeda and his collaborators numerically studied the collision of two branes

in a five-dimensional bulk, and found that the formation of a spacelike singularity after

the collision is generic [7] (See also [8]). This is an important result, as it implies that

a low-energy description of colliding branes breaks down at some point, and a complete

predictability is lost, without the complete theory of quantum gravity. Similar conclusions

were obtained from the studies of two colliding orbifold branes [9]. However, lately it was

argued that, from the point of view of the higher dimensional spacetime where the low effec-

tive action was derived, these singularities are very mild and can be easily regularised [10].

Lately, we constructed a class of exact solutions with two free parameters to the

five-dimensional Einstein field equations, which represents the collision of two timelike 3-

branes [11]. We found that, among other things, spacelike singularities generically develop

after the collision, due to the mutual focus of the two branes. Non-singular spacetimes can

be constructed only in the case where both of the two branes violate the energy conditions.

In this paper, we shall systematically study the collision of two timelike 8-branes

without Z2 symmetry in the framework of string theory. In particular, in section 2, starting

with the Neveu-Schwarz/Neveu-Schwarz (NS-NS) sector in (D+d) dimensions, M̂D+d =

MD ×Md, we first obtain the D-dimensional effective theory in both the string frame and

the Einstein frame, by toroidal compactification. To study the collision of two branes, we

add brane actions to the D-dimensional effective action, and then derive the gravitational

and matter field equations, including the ones on the two branes. In section 3, we apply

these general formulas to the case where D = 5 = d for a large class of spacetimes, and

obtain the explicit field equations both outside the two branes and on the two branes.

In section 4, we construct a class of exact solutions in the Einstein frame, in which the

potential of the radion field on the two branes takes an exponential form, while the matter

fields on the two branes are dust fluids. After identifying spacetime singularities both

outside and on the branes, we are able to draw the corresponding Penrose diagrams for

various cases. In sections 5, we study the local and global properties of these solutions in

the 5-dimensional string frame, while in section 6 we first lift the solutions to 10 dimensions,

and then study the local and global properties of these 10-dimensional solutions in detail.

In section 7, we derive our main conclusions and present some remarks. There is also an

appendix, in which we study a class of 10-dimensional spacetimes. In particular, we divide

the Einstein tensor explicitly into three parts, one on each side of a colliding brane, and

the other is on the brane. It is remarkable that the part on the brane can be written in

the form of an anisotropic fluid.

2 The model

Let us consider the toroidal compactification of the NS-NS sector of the action in (D+d)

dimensions, M̂D+d = MD ×Md, where for string theory we have D + d = 10. Then, the
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action takes the form [12],

SD+d=− 1

2κ2
D+d

∫

dD+dx
√

|ĝD+d|e−Φ̂

{

R̂D+d[ĝ] + ĝAB
(

∇̂AΦ̂
)(

∇̂BΦ̂
)

− 1

12
Ĥ2

}

, (2.1)

where in this paper we consider the (D+d)-dimensional spacetimes described by the metric,

dŝ2D+d = ĝABdx
AdxB = γab (xc) dxadxb + φ̂2 (xc) γ̂ij

(

zk
)

dzidzj , (2.2)

with γab (xc) and φ̂ (xc) depending only on the coordinates xa of the spacetime MD, and

γ̂ij
(

zk
)

only on the internal coordinates zk, where a, b, c = 0, 1, 2, . . . ,D − 1; i, j, k =

D,D + 1, . . . ,D + d− 1; and A,B,C = 0, 1, 2, . . . ,D + d− 1. Assuming that matter fields

are all independent of zk, one finds that the internal space Md must be Ricci flat,

R[γ̂] = 0. (2.3)

For the purpose of the current work, it is sufficient to assume that Md is a d−dimensional

torus, T d = S1 × S1 × . . . × S1. Then, we find that

R̂D+d [ĝ] = RD [γ] +
d(d− 1)

φ̂2
γab
(

∇aφ̂
)(

∇bφ̂
)

− 2

φ̂d
γab
(

∇a∇bφ̂
d
)

. (2.4)

Ignoring the dilaton Φ̂ and the form fields Ĥ,

Φ̂ = 0 = Ĥ, (2.5)

we find that the integration of the action (2.1) over the internal space yields,

SD = − 1

2κ2
D

∫

dDx
√

|γ|φ̂d
{

RD [γ] +
d(d− 1)

φ̂2
γab
(

∇aφ̂
)(

∇bφ̂
)

}

, (2.6)

where

κ2
D ≡

κ2
D+d

Vs
, (2.7)

and Vs is defined as

Vs ≡
∫

√

γ̂ddz. (2.8)

For a string scale compactification, we have Vs =
(

2π
√
α′
)d

, where (2πα′) is the inverse

string tension.

After the conformal transformation,

gab = φ̂
2d

D−2γab, (2.9)

the D-dimensional effective action of eq. (2.6) can be cast in the minimally coupled form,

S
(E)
D = − 1

2κ2
D

∫

dDx
√

|gD|
{

RD [g] − κ2
D (∇φ)2

}

, (2.10)
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where

φ ≡ ±
(

(D + d− 2)d

κ2
D (D − 2)

)1/2

ln
(

φ̂
)

. (2.11)

The action of eq. (2.6) is usually referred to as the string frame, and the one of eq. (2.10)

as the Einstein frame. It should be noted that solutions related by this conformal transfor-

mation can have completely different physical and geometrical properties in the two frames.

In particular, in one frame a solution can be singular, while in the other it can be totally

free from any kind of singularities. A simple example is the flat FRW universe which is

always conformally flat, γab = a2(τ)ηab. But the spacetime described by γab usually has a

big bang singularity, while the one described by ηab is Minkowski, and does not have any

kind of spacetime singularities.

To study the collision of two branes, we add the following brane actions to S
(E)
D

of eq. (2.10),

S
(E,I)
D−1,m =

∫

M
(I)
D−1

√

∣

∣

∣g
(I)
D−1

∣

∣

∣

(

L(m,I)
D−1 (ψ) − V

(I)
D−1(φ)

)

dD−1ξ(I), (2.12)

where I = 1, 2, V
(I)
D−1(φ) denotes the potential of the scalar field φ on the I-th brane, and

ξµ(I)’s are the intrinsic coordinates of the I-th brane, where µ, ν, λ = 0, 1, 2, . . . ,D − 2.

L(m,I)
D−1 (ψ) is the Lagrangian density of matter fields located on the I-th brane, denoted

collectively by ψ. It should be noted that the above action does not include kinetic terms

of the scalar field on the branes. This setup is quite similar to the Horava-Witten heterotic

M-Theory on S1/Z2 [9, 13, 14], in which the two potentials V
(1)
4 (φ) and V

(2)
4 (φ) have

opposite signs. It is also similar to the modulus stabilization mechanism of Goldberger and

Wise [15], which has been lately applied to orbifold branes in string theory [16]. The two

branes are localized on the surfaces,

ΦI (xa) = 0, (2.13)

or equivalently

xa = xa
(

ξµ(I)

)

. (2.14)

g
(I)
D−1 denotes the determinant of the reduced metric g

(I)
µν of the I-th brane, defined as

g(I)
µν ≡ gabe

(I)a
(µ) e

(I)b
(ν)

∣

∣

∣

M
(I)
D−1

, (2.15)

where

e
(I) a
(µ) ≡ ∂xa

∂ξµ(I)

∣

∣

∣

∣

∣

M
(I)
D−1

. (2.16)

Then, the total action is given by,

S
(E)
total = S

(E)
D +

2
∑

I=1

S
(E,I)
D−1,m. (2.17)
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Variation of the total action (2.17) with respect to gab yields the D-dimensional gravi-

tational field equations,

Rab−
1

2
Rgab= κ2

D



T φab+

2
∑

I=1

(

T (m,I)
µν +g(I)

µν V
(I)
D−1(φ)

)

e(I,µ)
a e

(I,ν)
b

√

√

√

√

∣

∣

∣

∣

∣

g
(I)
D−1

gD

∣

∣

∣

∣

∣

δ (ΦI)



 , (2.18)

where

T φab = ∇aφ∇bφ− 1

2
gab (∇φ)2 ,

T (m,I)
µν = 2

δL(m,I)
D−1

δg(I) µν
− g(I)

µν L
(m,I)
D−1 , (2.19)

and ∇a

(

∇(I)
µ

)

denotes the covariant derivative with respect to gab

(

g
(I)
µν

)

.

Variation of the total action with respect to φ, on the other hand, yields the Klein-

Gordon field equations,

�φ = −
2
∑

I=1

∂V
(I)
D−1(φ)

∂φ

√

√

√

√

∣

∣

∣

∣

∣

g
(I)
D−1

gD

∣

∣

∣

∣

∣

δ (ΦI), (2.20)

where � ≡ gab∇a∇b. We also have

∇(I)
ν T (m,I) µν = 0. (2.21)

Since we are mainly interested in collision of branes in string theory, in the rest of this

paper we shall set D = 5 = d.

3 Colliding timelike 3-branes in the Einstein frame

We consider the 5-dimensional spacetime in the Einstein frame described by the metric,

ds25 = gabdx
adxb = e2σ(t,y)

(

dt2 − dy2
)

− e2ω(t,y)dΣ2
0, (3.1)

where dΣ2
0 ≡

(

dx2
)2

+
(

dx3
)2

+
(

dx4
)2

, and x0 = t, x1 = y. Then, the non-vanishing

components of the Ricci tensor is given by

Rtt = −{3ω,tt + σ,tt + 3ω,t (ω,t − σ,t) −σ,yy − 3ω,yσ,y} , (3.2)

Rty = −3 {ω,ty + ω,tω,y − ω,tσ,y − ω,yσ,t} , (3.3)

Ryy = −{3ω,yy + σ,yy + 3ω,y (ω,y − σ,y) −σ,tt − 3ω,tσ,t} , (3.4)

Rij = δije
2(ω−σ)

{

ω,tt + 3ω,t
2 −

(

ω,yy + 3ω,y
2
)}

, (3.5)

where now i, j = 2, 3, 4, and ω,t ≡ ∂ω/∂t, etc.

We assume that the two colliding 3-branes move along the hypersurfaces given, respec-

tively, by

Φ1(t, y) = t− ay = 0,

Φ2(t, y) = t+ by = 0, (3.6)

– 5 –
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IIIII

I

t

y

nl uv
a a aa

t −
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y 
= 

0t + by = 0

0

Figure 1. The five-dimensional spacetime in the (t, y)-plane for a > 1, b > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 and Σ2, which are defined by eq. (3.10) in the text. The

four regions, I − IV , are defined by eq. (3.8).

where a and b are two arbitrary constants, subjected to the constraints,

a2 > 1, b2 > 1, (3.7)

in order for the two hypersurfaces to be timelike. The two colliding branes divide the whole

spacetime into four regions, I − IV , which are defined, respectively, as

Region I ≡ {xa : Φ1 < 0, Φ2 < 0} ,
Region II ≡ {xa : Φ1 > 0, Φ2 < 0} ,

Region III ≡ {xa : Φ1 < 0, Φ2 > 0} ,
Region IV ≡ {xa : Φ1 > 0, Φ2 > 0} , (3.8)

as shown schematically in figure 1. In each of these regions, we define

FA ≡ F (t, y)|Region A , (3.9)

where now A = I, II, III, IV .

We also define the two hypersurfaces Σ1 and Σ2 as,

Σ1 ≡ {xa : Φ1 = 0} ,
Σ2 ≡ {xa : Φ2 = 0} . (3.10)

Then, it can be shown that the normal vectors to each of these two surfaces are given by

na = N
(

δta − aδya
)

,

la = L
(

δta + bδya
)

, (3.11)

– 6 –
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where

F (I) ≡ F (t, y)|ΦI=0 ,

N ≡ eσ
(1)

(a2 − 1)1/2
,

L ≡ eσ
(2)

(b2 − 1)1/2
, (3.12)

with F = {σ, ω, φ}. We also introduce the two timelike vectors ua and va via the relations,

ua = N
(

aδta − δya
)

,

va = L
(

bδta + δya
)

. (3.13)

It can be shown that these vectors have the following properties,

nan
a = −1 = lal

a,

uau
a = +1 = vav

a,

nau
a = 0 = lav

a. (3.14)

In the following, we shall consider field equations, (2.18) and (2.20), in Regions I− IV
and along the hypersurfaces Σ1,2, separately.

It should be noted that in the above setup, the two 3-branes do not have the Z2

symmetry, in contrast to the setup of Horava-Witten in M theory [9, 13] and of Randall-

Sundrum [17].

3.1 Field equations in regions I − IV

In these regions, the field equations of eqs. (2.18) and (2.20) take the form,

RAab = ϕA,aϕ
A
,b , (3.15)

�
(A)ϕA = 0, (3.16)

where ϕ = κ5φ, and �
(A) ≡ gA ab∇(A)

a ∇(A)
b , and ∇(A)

a denotes the covariant derivative with

respect to gAab, and gAab is the metric defined in Region A. From eq. (3.5) and the fact that

ϕ = ϕ(t, y), we find that

ω =
1

3
ln (f (t+ y) + g (t− y)) , (3.17)

where f (t+ y) and g (t− y) are arbitrary functions of their indicated arguments. Note that

in writing eq. (3.17) we dropped the super indices A. In the following we shall adopt this

convention, except for the case where confusions may raise. In the following we consider

only the case where

f ′g′ 6= 0, (3.18)

where a prime denotes the ordinary derivative with respect to the indicated argument.

Then, introducing two new variables ξ± via the relations,

ξ±(t, y) ≡ f (t+ y) ± g (t− y) , (3.19)

– 7 –
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we find that eq. (3.15) yields,

M+ =
1

2
ξ+
(

ϕ+
2 + ϕ−

2
)

, (3.20)

M− = ξ+ϕ+ϕ−, (3.21)

and

M++ −M−− = −1

2

(

ϕ+
2 − ϕ−

2
)

, (3.22)

where M± ≡ ∂M/∂ξ±, and

M (ξ+, ξ−) = σ +
1

3
ln ξ+ − 1

2
ln
(

4f ′g′
)

. (3.23)

On the other hand, eq. (3.16) can be cast in the form,

ϕ++ − ϕ−− +
1

ξ+
ϕ+ = 0. (3.24)

It should be noted that eqs. (3.20)–(3.22) and (3.24) are not all independent. In fact,

eq. (3.22) is the integrability condition of eqs. (3.20) and (3.21), and can be obtained from

eqs. (3.20), (3.21) and (3.24). Therefore, in Regions I − IV , the field equations reduce to

eqs. (3.20), (3.21) and (3.24).

To find solutions, one may first integrate eq. (3.24) to find ϕ, and then integrate

eqs. (3.20) and (3.21) to find M . However, eq. (3.24) has infinite numbers of solutions, and

the corresponding general solutions of M has not been worked out yet [18]. Once ϕ and

M are known, the metric coefficients σ and ω are then given by

σ = M − 1

3
ln (f + g) +

1

2
ln
(

4f ′g′
)

,

ω =
1

3
ln (f + g) . (3.25)

3.2 Field equations on the 3-branes

3.2.1 Field equations on the surface Φ1 = 0

Across the hypersurface Φ1 = 0, for any given C0 function F (t, y), it can be written as [19],

F (t, y) = F+(t, y)H (Φ1) + F−(t, y) [1 −H (Φ1)] , (3.26)

where F+ (F−) denotes the function F (t, y) defined in the region Φ1 > 0 (Φ1 < 0), and

H(x) denotes the heaviside function, defined as

H(x) =

{

1, x > 0,

0, x < 0.
(3.27)

On the other hand, projecting F,a onto the na and ua directions, we find

F,a = Fuua − Fnna, (3.28)

– 8 –
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where

Fu ≡ uaF,a, Fn ≡ naF,a. (3.29)

Since [Fu]
− = 0 due to the continuity of F across the branes, from the above expressions

we find

[F,a]
− = − [Fn]

− na, (3.30)

where

[F,a]
− ≡ lim

Φ1→0+
F+
,a − lim

Φ1→0−
F−
,a. (3.31)

Then, we find that

F,t = F+
,tH (Φ1) + F−

,t [1 −H (Φ1)] ,

F,y = F+
,yH (Φ1) + F−

,y [1 −H (Φ1)] ,

F,tt = F+
,ttH (Φ1) + F−

,tt [1 −H (Φ1)] −N [Fn]
− δ (Φ1) ,

F,ty = F+
,tyH (Φ1) + F−

,ty [1 −H (Φ1)] + aN [Fn]
− δ (Φ1) ,

F,yy = F+
,yyH (Φ1) + F−

,yy [1 −H (Φ1)] − a2N [Fn]
− δ (Φ1) , (3.32)

where δ (Φ1) denotes the Dirac delta function. Then, we find that the Ricci tensor given

by eqs. (3.2)–(3.5) can be cast in the form,

Rab = R+
abH (Φ1) +R−

ab [1 −H (Φ1)] +RImab δ (Φ1) , (3.33)

where R+
ab

(

R−
ab

)

is the Ricci tensor calculated in the region Φ1 > 0 (Φ1 < 0), and RImab
denotes the Ricci tensor calculated on the hypersurface Φ1 = 0, which has the following

non-vanishing components,

RImtt = N
{

3 [ωn]
− −

(

a2 − 1
)

[σn]
−} ,

RImty = −3aN [ωn]
− ,

RImyy = N
{

3a2 [ωn]
− +

(

a2 − 1
)

[σn]
−} ,

RImij = Ne2(ω
(1)−σ(1))

(

a2 − 1
)

[ωn]
− δij . (3.34)

On the hypersurface Φ1 = 0, the metric (3.1) reduces to

ds25
∣

∣

Φ1=0
= g(1)

µν dξ
µ
(1)dξ

ν
(1) = dτ2 − a2

u(τ)dΣ
2
0,

where ξµ(1) ≡
{

τ, x2, x3, x4
}

, and

dτ ≡ ǫτ

(

a2 − 1

a2

)1/2

eσ
(I)
dt,

au(τ) ≡ eω
(1)
, (3.35)
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with ǫτ = ±1. Then, we find that

e
(1) a
(τ) ≡ ∂xa

∂τ
= ṫ

(

δat +
1

a
δay

)

,

e
(1) a
(i) ≡ ∂xa

∂ξi(1)
= δai ,

√

√

√

√

∣

∣

∣

∣

∣

g
(1)
4

g5

∣

∣

∣

∣

∣

= e−2σ(1)
, (3.36)

where i = 2, 3, 4 and ṫ ≡ dt/dτ . Then, the field equations of eq. (2.18) can be written as

[ωn]
− =

κ2
5e

−σ(1)

3 (a2 − 1)1/2

(

ρ(1)
m + V

(1)
4

)

, (3.37)

2 [ωn]
− + [σn]

− =
κ2

5e
−σ(1)

(a2 − 1)1/2

(

V
(1)
4 − p(1)

m

)

, (3.38)

where in writing the above expressions we had assumed that T
(m,1)
µν takes the form of a

perfect fluid,

T (m,1)
µν ≡

(

ρ(1)
m + p(1)

m

)

w(1)
µ w(1)

ν − p(1)
m g(1)

µν ,

w(1)
µ = δτµ. (3.39)

Similarly, it can be shown that the Klein-Gordon equation (2.20) and the conservation law

of the matter fields (2.21) on Σ1 take, respectively, the forms,

[φn]
− = − e−σ

(1)

(a2 − 1)1/2
∂V

(1)
4 (φ)

∂φ
, (3.40)

dρ
(1)
m

dτ
+ 3Hu

(

ρ(1)
m + p(1)

m

)

= 0, (3.41)

where Hu ≡ ȧu/au.

3.2.2 Field equations on the surface Φ2 = 0

Following a similar procedure as what we did in the last sub-section, one can show that

the Ricci tensor across the brane Φ2 = 0 can be written as

Rab = R+
abH (Φ2) +R−

ab [1 −H (Φ2)] +RImab δ (Φ2) , (3.42)

where R+
ab

(

R−
ab

)

now is the Ricci tensor calculated in the region Φ2 > 0 (Φ2 < 0),

and RImab denotes the Ricci tensor calculated on the hypersurface Φ2 = 0, which has the

following non-vanishing components,

RImtt = L
{

3 [ωl]
− −

(

b2 − 1
)

[σl]
−} ,

RImty = 3bL [ωl]
− ,

RImyy = L
{

3b2 [ωl]
− +

(

b2 − 1
)

[σl]
−} ,

RImij = Le2(ω
(2)−σ(2))

(

b2 − 1
)

[ωl]
− δij , (3.43)
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where ωl ≡ laω,a etc. On the hypersurface Φ2 = 0, the metric (3.1) reduces to

ds25
∣

∣

Φ2=0
= g(2)

µν dξ
µ
(2)
dξν(2) = dη2 − a2

v(η)dΣ
2
0,

where ξµ(2) ≡
{

η, x2, x3, x4
}

, and

dη ≡ ǫη

(

b2 − 1

b2

)1/2

eσ
(2)
dt,

av(η) ≡ eω
(2)
, (3.44)

with ǫη = ±1. Then, we find that

e
(2) a
(η) ≡ ∂xa

∂η
= t∗

(

δat −
1

b
δay

)

,

e
(2) a
(i) ≡ ∂xa

∂ξi(2)
= δai ,

√

√

√

√

∣

∣

∣

∣

∣

g
(2)
4

g5

∣

∣

∣

∣

∣

= e−2σ(2)
, (3.45)

where t∗ ≡ dt/dη. Hence, the field equations of eq. (2.18) can be written as

[ωl]
− =

κ2
5e

−σ(2)

3 (b2 − 1)1/2

(

ρ(2)
m + V

(2)
4

)

, (3.46)

2 [ωl]
− + [σl]

− =
κ2

5e
−σ(2)

(b2 − 1)1/2

(

V
(2)
4 − p(2)

m

)

, (3.47)

where in writing the above equations we had assumed that T
(m,2)
µν takes the form,

T (m,2)
µν ≡

(

ρ(2)
m + p(2)

m

)

w(2)
µ w(2)

ν − p(2)
m g(2)

µν ,

w(2)
µ = δηµ. (3.48)

Similarly, it can be shown that the Klein-Gordon equation (2.20) and the conservation law

of the matter fields (2.21) on Σ2 take, respectively, the forms,

[φl]
− = − e−σ

(2)

(b2 − 1)1/2
∂V

(2)
4 (φ)

∂φ
, (3.49)

dρ
(2)
m

dη
+ 3Hv

(

ρ(2)
m + p(2)

m

)

= 0, (3.50)

where Hv ≡ a∗v/av.
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4 Particular solutions for colliding timelike 3-branes in the Einstein

frame

Choosing the potentials V
(I)
4 (φ) on the two branes as

V
(I)
4 (φ) = V

(I,0)
4 e−αφ, (4.1)

where V
(I,0)
4 ’s and α are constants, and that the matter fields on each of the two branes

are dust fluids, i.e.,

p(I)
m = 0, (4.2)

we find a class of solutions, which represents the collision of two timelike 3-branes and is

given by

σ =

(

χ2 − 1

3

)

ln (X0 −X) + σ0,

ω =
1

3
ln (X0 −X) + ω0,

φ =
1

α
ln (X0 −X) + φ0, (4.3)

where χ ≡ κ5/(
√

2α), A0, σ0, ω0 and φ0 are arbitrary constants, and

X = b (t− ay)H (Φ1) + a (t+ by)H (Φ2) =



















(a+ b)t, IV,

a (t+ by) , III,

b (t− ay) , II,

0, I.

(4.4)

The constants a and b are given by

b
(

a2 − 1
)

=
3κ2

5V
(1,0)
4

3χ2 + 1
,

a
(

b2 − 1
)

= −3κ2
5V

(2,0)
4

3χ2 + 1
. (4.5)

When α = ±∞, the solutions reduce to the ones studied previously [11]. So, in the rest of

this paper we shall consider only the case where α 6= ±∞. Without loss of generality, we

can always set σ0 = ω0 = φ0 = 0, and assume that

X0 > 0. (4.6)

It can be shown that the field equations, eqs. (3.15) and (3.16) [or eqs. (3.20), (3.21)

and (3.24)], in Regions I − IV are satisfied identically for the above solutions. To study

the singular behavior of the spacetime in each of the four regions, we calculate the Ricci

scalar, which in the present case is given by

R = κ2
5g
abφ,aφ,b =

κ2
5B

α2 (X0 −X)2(χ
2+2/3)

, (4.7)
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where X is given by eq. (4.4), and

B =



















(a+ b)2, IV,

−a2
(

b2 − 1
)

, III,

−b2
(

a2 − 1
)

, II,

0, I.

(4.8)

On the 3-brane located on Φ1 = 0, the reduced metric takes the form,

ds25
∣

∣

Σ1
= dτ2 − a2

u(τ)d
2Σ0, (4.9)

where

au(τ) =

{

[β (τs − τ)]
1

3χ2+2 , Φ2 > 0,

X
1/3
0 , Φ2 < 0,

(4.10)

with

Φ2|Φ1=0 =
a+ b

a
t,

β ≡ |a(a+ b)|
(a2 − 1)1/2

(

χ2 +
2

3

)

,

τs ≡ β−1X
χ2+ 2

3
0 (4.11)

Note that in writing the above expressions, we had chosen ǫτ = sign(a+b). From eqs. (3.37)

and (3.38), on the other hand, we find that

ρ(1)
m =

ρ
(1,0)
m

X0 −X(1)(t)
=

{

[β (τs − τ)]
− 3

3χ2+2 , Φ2 > 0,

X−1
0 , Φ2 < 0,

(4.12)

where

ρ(1,0)
m ≡ b

(

a2 − 1
)

κ2
5

(

2

3
− χ2

)

,

X(1)(t) ≡ (a+ b) tH (Φ2) . (4.13)

From eqs. (4.3) and (4.4) we also find that

φ(1)(τ) =

{

1
α(3χ2+2)

ln [β (τs − τ)] , Φ2 > 0,
1
α lnX0, Φ2 < 0.

(4.14)

Similarly, on the 3-brane located on the hypersurface Φ2 = 0, the reduced metric takes

the form,

ds25
∣

∣

Σ2
= dη2 − a2

v(η)d
2Σ0, (4.15)

where

av(η) =

{

[γ (ηs − η)]
1

3χ2+2 , Φ1 > 0,

X
1/3
0 , Φ1 < 0,

(4.16)
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with ǫη = sign(a+ b), and

Φ1|Φ2=0 =
a+ b

b
t,

γ ≡ |b(a+ b)|
(b2 − 1)1/2

(

χ2 +
2

3

)

,

ηs ≡ γ−1X
χ2+ 2

3
0 . (4.17)

The field equations (3.46) and (3.47), on the other hand, yield

φ(2)(η) =

{

1
α(3χ2+2) ln [γ (ηs − η)] , Φ1 > 0,
1
α lnX0, Φ1 < 0,

,

ρ(2)
m =

ρ
(2,0)
m

X0 −X(2)(t)
=

{

[γ (ηs − η)]
− 3

3χ2+2 , Φ1 > 0,

X−1
0 , Φ1 < 0,

(4.18)

where

ρ(2,0)
m ≡ −a

(

b2 − 1
)

κ2
5

(

2

3
− χ2

)

,

X(2)(t) ≡ (a+ b) tH (Φ1) . (4.19)

It is interesting to note that when χ2 = 2/3, we have ρ
(I)
m = 0, (I = 1, 2), and the

two 3-branes are supported only by the tensions V
(I)
4 (φ), which are non-zero for any finite

value of α [Recall the conditions (3.7)]. It is also remarkable to note that the presence of

these two dust fluids is not essential to the singularity nature of the spacetime both in the

bulk and on the branes. So, in the following we shall study the case with χ2 = 2/3 together

with other cases.

To study the above solutions further, let us consider the following cases separately: (a)

a > 1, b > 1; (b) a > 1, b < −1; (c) a < −1, b > 1; and (d) a < −1, b < −1.

4.1 a > 1, b > 1

In this case, from eq. (4.5) we find that

V
(1)
4 (φ) > 0, V

(2)
4 (φ) < 0, (4.20)

while eqs. (4.12) and (4.18) show that

ρ(1)
m =

{

≥ 0, χ2 ≤ 2/3,

< 0, χ2 > 2/3,
,

ρ(2)
m =

{

≤ 0, χ2 ≤ 2/3,

> 0, χ2 > 2/3,
. (4.21)

From eq. (4.7) we can also see that the spacetime is singular along the line X0 = (a+ b)t

in Region IV , the line X0 = a(t+ by) in Region III, and the line X0 = b(t − ay) Region

II, as shown by figure 2.
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t

y

I

A B

C D
II III

IV

t  
− 

 a
y 

 =
  0 0 t  +  by  =  0

Figure 2. The five-dimensional spacetime in the (t, y)-plane for a > 1, b > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 : t − ay = 0 and Σ2 : t + by = 0. AB denotes the line

X0 = (a + b)t, AC the line X0 = b(t − ay), and BD the line X0 = a(t + by). The spacetime is

singular along these lines. The four regions, I − IV , are defined by eq. (3.8).

Before the collision (t < 0), the scalar field is constant, φ(I) = φ1 ≡ (1/α) ln(X0),

but both of the two potentials V
(1)
4 (φ) and V

(2)
4 (φ) are not zero, as are the dust energy

densities ρ
(I)
m , except for χ2 = 2/3. In the case χ2 = 2/3, the dust fluids disappear and

the two branes are supported only by tensions, denoted by the two constant potentials

V
(1)
4 (φ1) and V

(2)
4 (φ1), which have the opposite signs, and are quite similar to the case

of Randall-Sundrum (RS) branes [17], except for that in the RS model the two branes

have Z2 symmetry, while here we do not have. Before the collision, the spacetime on the

two branes are flat, that is, the matter fields on the 3-brane do not curve the 3-branes.

However, it does curve the spacetime outside the 3-branes. This is quite similar to the

so-called self-tuning mechanism of brane worlds [20].

After the collision, the two 3-branes focus each other and finally a spacetime sin-

gularity is developed at, respectively, τ = τs and η = ηs. The spacetime on the two

branes is homogeneous and isotropic, and is described, respectively, by eqs. (4.9)–(4.10)

and eqs. (4.15)–(4.16). The corresponding Penrose diagram is given by figure 3.

4.2 a > 1, b < −1

In this case, we find that

V
(1)
4 (φ) < 0, V

(2)
4 (φ) < 0,

ρ(I)
m =

{

≥ 0, χ2 ≥ 2/3,

< 0, χ2 < 2/3.
(4.22)

Thus, unlike the last case, now both potentials V
(I)
4 (φ) are negative, while the two dust

energy densities always have the same sign.

To study the solutions further in this case, we shall consider the two subcases, a >

|b| > 1 and |b| > a > 1, separately.
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A B

C

IV

IIIII 0

 I

P Q

Figure 3. The Penrose diagram for a > 1, b > 1. The spacetime is singular along the straight line

AB and the curved lines APC and BQC.

4.2.1 a > −b > 1

When a > −b > 1, we have

Φ1|Φ2=0 = −a− |b|
|b| t =

{

< 0, t > 0,

> 0 , t < 0,

Φ2|Φ1=0 =
a− |b|
a

t =

{

> 0, t > 0,

< 0, t < 0,

X0 −X =



















X0 − (a− |b|)t, IV,

X0 − a (t− |b|y) , III,
X0 + |b| (t− ay) , II,

0, I.

(4.23)

Then, we find that the spacetime is singular along the line X0 = (a − |b|)t in Region IV ,

and the line X0 = a (t− |b|y) in Region III, as shown in figure 4.

Before the collision (t < 0), the scalar field φ(1) is constant on the 3-brane located on

the hypersurface Σ1 : t − ay = 0, so does the dust energy density ρ
(1)
m . In contrast, both

the scalar field φ(2) and the dust energy density ρ
(2)
m are time-dependent on the 3-brane

located on Σ2 : t − |b|y = 0, and the corresponding spacetime is described by eqs. (4.15)

and (4.16) with η ≤ 0. Note that along the hypersurface Σ2, we have Φ1 > 0 for t < 0, as

shown by eq. (4.23).

After the collision, the 3-brane along Σ2 transfers its energy to the one along Σ1, so

that its energy density ρ
(2)
m and potential V

(2)
4 (φ), as well as the scalar field φ(2), become

constant, while the energy density ρ
(1)
m and the scalar field φ(1) become time-dependent.

Because of the mutual focus of the two branes, a spacetime singularity is finally developed at

τ = τs, denoted by the point B in figure 4. Afterwards, the spacetime becomes also singular

along the line X0 = (a − |b|)t in Region IV and the line X0 = a(t − |b|y) in Region III.
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0

III

II

t

y

IV

I

BX    =  X

X   
= 

 X

t  
− 

 |b
| y

  =
  0

0

0

t  −  ay  =  0

A

C

Figure 4. The five-dimensional spacetime in the (t, y)-plane for a > −b > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 : t− ay = 0 and Σ2 : t− |b|y = 0. The spacetime is singular

along the line AB in Region IV and the line BC in Region III. The spacetime is also singular on

the 3-brane at the point B where τ = τs. The four regions, I − IV , are defined by eq. (3.8).

A B

C

III
IV

II

0
I

Figure 5. The Penrose diagram for a > −b > 1. The spacetime is singular along the lines AB

and BC.

It is interesting to note that these singularities are always formed, regardless of the signs

of ρ
(1)
m and ρ

(2)
m . In fact, they are formed even when ρ

(1)
m (χ2 = 2/3) = 0 = ρ

(2)
m (χ2 = 2/3),

as can be seen from eqs. (4.7), (4.9) and (4.10). This is because the scalar field and the

potentials V
(I)
4 (φ) are still non-zero, and due the non-linear interaction of the scalar field

itself, spacetime singularities are still formed. The corresponding Penrose diagram is given

by figure 5.
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0

t

y

t s
B

IV

I
X   =  X

X
   

 =
   

X
0

0

t  
− 

ay
  =

0

t  − |b| y = 0
A

C

III

 II

Figure 6. The five-dimensional spacetime in the (t, y)-plane for −b > a > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 : t− ay = 0 and Σ2 : t− |b|y = 0. The spacetime is singular

along the line AB in Region IV and the line BC in Region III. The spacetime is also singular on

the 3-brane at the point B.

4.2.2 −b > a > 1

When −b > a > 1, we have

Φ1|Φ2=0 = −|b| − a

|b| t =

{

> 0, t > 0,

< 0, t < 0,

Φ2|Φ1=0 = −|b| − a

a
t =

{

< 0, t > 0,

> 0, t < 0,

X0 −X =



















X0 + (|b| − a)t, IV,

X0 − a (t− |b|y) , III,
X0 + |b| (t− ay) , II,

0, I.

(4.24)

Then, we find that the spacetime is singular along the line X0 = −(|b| − a)t in Region IV

and the line X0 = (a− |b|)t in Region III, as shown in figure 6.

Unlike the last case, now the 3-brane on Σ1 starts to expand at the singular point

B where τ = τs, as shown in figure 6, and collides with the one on Σ2 at the moment

τ = 0 (t = 0). After the collision, its energy density ρ
(1)
m the scalar field φ(2) and the dust

energy density ρ
(2)
m on Σ2 become time-dependent, and the corresponding spacetime is

described by eqs. (4.15) and (4.16) with η ∈ (0,−∞). The corresponding Penrose diagram

is given by figure 7.
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III
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IV
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0

Figure 7. The Penrose diagram for −b > a > 1. The spacetime is singular along the lines AB

and BC.

IV

I
0

t

y

B A

C

t + |a|y = 0

t + by  =  0

II

III

Figure 8. The five-dimensional spacetime in the (t, y)-plane for −a > b > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 : t+ |a|y = 0 and Σ2 : t+ by = 0. The spacetime is singular

along the line AB in Region IV and the line BC in Region II. The spacetime is also singular on

the 3-brane at the point B where η = ηs.

4.3 a < −1, b > 1

In this case, we find that

V
(I)
4 (φ) > 0,

ρ(I)
m =

{

≥ 0, χ2 ≤ 2/3,

< 0, χ2 > 2/3,
(4.25)

where I = 1, 2. Thus, in contrast to the last case, now both potentials V
(I)
4 (φ) are

positive, while the two dust energy densities always have the same sign.
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III
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Figure 9. The Penrose diagram for −a > b > 1. The spacetime is singular along the lines AB

and BC.

4.3.1 −a > b > 1

When −a > b > 1, we have

Φ1|Φ2=0 = −|a| − b

b
t =

{

< 0, t > 0,

> 0, t < 0,

Φ2|Φ1=0 =
|a| − b

|a| t =

{

> 0, t > 0,

< 0, t < 0,

X0 −X =



















X0 + (|a| − b)t, IV,

X0 + |a| (t+ by) , III,

X0 − b (t+ |a|y) , II,
0, I.

(4.26)

Then, the spacetime is singular along the line X0 = −(|a| − b)t in Region IV , and along

the line X0 = b (t+ |a|y) in Region II, as shown in figure 8. The corresponding Penrose

diagram is given by figure 9.

In this case, we also have

φ(1)(τ) =

{

1
α(3χ2+2)

ln [β (τs − τ)] , t > 0,
1
α lnX0, t < 0,

φ(2)(η) =

{

1
α lnX0, t > 0,

1
α(3χ2+2)

ln [γ (ηs − η)] , t < 0,

ρ(1)
m =

{

[β (τs − τ)]
− 3

3χ2+2 , t > 0,

X−1
0 , t < 0,

ρ(2)
m =

{

X−1
0 , t > 0,

[γ (ηs − η)]
− 3

3χ2+2 . t < 0.
(4.27)
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0

t
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C

t  +  |a| y  = 0 

t + by = 0
III

Figure 10. The five-dimensional spacetime in the (t, y)-plane for b > −a > 1. The two 3-branes

are moving along the hypersurfaces, Σ1 : t+ |a|y = 0 and Σ2 : t+ by = 0. The spacetime is singular

along the line AB in Region IV and the line BC in Region II. The spacetime is also singular on

the 3-brane at the point B where η = ηs.

4.3.2 b > −a > 1

When b > −a > 1, we have

Φ1|Φ2=0 =
b− |a|
b

t =

{

> 0, t > 0,

< 0, t < 0,

Φ2|Φ1=0 = −b− |a|
|a| t =

{

< 0, t > 0,

> 0, t < 0,

X0 −X =



















X0 − (b− |a|)t, IV,

X0 + |a| (t+ by) , III,

X0 − b (t+ |a|y) , II,
0, I.

(4.28)

We also have

φ(1)(τ) =

{

1
α lnX0, t > 0,

1
α(3χ2+2)

ln [β (τs − τ)] , t < 0,

φ(2)(η) =

{

1
α(3χ2+2)

ln [γ (ηs − η)] , t > 0,
1
α lnX0, t < 0,

ρ(1)
m =

{

X−1
0 , t > 0,

[β (τs − τ)]
− 3

3χ2+2 , t < 0,

ρ(2)
m =

{

[γ (ηs − η)]
− 3

3χ2+2 . t > 0,

X−1
0 , t ¡ 0.

(4.29)

Then, the spacetime is singular along the line X0 = (b − |a|)t in Region IV , and along
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Figure 11. The Penrose diagram for b > −a > 1. The spacetime is singular along the lines AB

and BC.

the line X0 = b (t+ |a|y) in Region II, as shown in figure 10. The corresponding Penrose

diagram is given by figure 11.

4.4 a < −1, b < −1

In this case, we have

V
(1)
4 (φ) < 0, V

(2)
4 (φ) > 0,

ρ(1)
m =

{

≥ 0, χ2 ≥ 2/3,

< 0, χ2 < 2/3,
,

ρ(2)
m =

{

≥ 0, χ2 ≤ 2/3,

> 0, χ2 > 2/3,
(4.30)

and

Φ1|Φ2=0 =
|a| + |b|

|b| t =

{

> 0, t > 0,

< 0, t < 0,

Φ2|Φ1=0 =
|a| + |b|

|a| t =

{

> 0, t > 0,

< 0, t < 0,

X0 −X =



















X0 + (|a| + |b|)t, IV,

X0 + |a| (t− |b|y) , III,
X0 + |b| (t+ |a|y) , II,
0, I.

(4.31)
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t
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t  +  |a| y = 0t  
− 

 |b
|y

 =
 0

Figure 12. The five-dimensional spacetime in the (t, y)-plane for a < −1, b < −1. The two

3-branes are moving along the hypersurfaces, Σ1 : t+ |a|y = 0 and Σ2 : t− |b|y = 0. The spacetime

is free of any kind of spacetime singularities in the four regions, I − IV , as well as on the two

3-branes.

Then, we find that

φ(1)(τ) =

{

1
α(3χ2+2) ln [β (τs − τ)] , t > 0,
1
α lnX0, t < 0,

φ(2)(η) =

{

1
α(3χ2+2) ln [γ (ηs − η)] , t > 0,
1
α lnX0, t < 0,

ρ(1)
m =

{

[β (τs − τ)]
− 3

3χ2+2 , t > 0,

X−1
0 , t < 0,

ρ(2)
m =

{

[γ (ηs − η)]
− 3

3χ2+2 . t > 0,

X−1
0 , t ¡ 0.

(4.32)

Note that in the present case, after the collision t > 0, we have τ, η < 0. Thus, in this case

the spacetime is free of any kind singularity in all the four regions, as well as on the two

branes, as shown in figure 12. The corresponding Penrose diagram is given by figure 13.

It is interesting to note that when χ2 = 2/3, the dust fluid on each of the two 3-

branes disappears, and the branes are supported only by the tensions, where the brane

along Σ1 has a negative tension, while the one along Σ2 has a positive tension. It is also

interesting to note that, when χ2 6= 2/3, both dust fluid are present, but they always have

opposite signs, that is, if one satisfies the energy conditions [21], the other one must violate

these conditions.

5 Colliding 3-branes in the 5-dimensional string frame

The spacetime singularity behavior in general can be quite different in the two frames, due

to the conformal transformations of eq. (2.9), which are often singular. The 5-dimensional
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Figure 13. The Penrose diagram for a < −1, b < −1. The spacetime is non-singular in all

the regions.

spacetime in the string frame is given by

dŝ25 ≡ γabdx
adxb = e2σ̂(t,y)

(

dt2 − dy2
)

− e2ω̂(t,y)dΣ2
0, (5.1)

where dΣ2
0 is given in eq. (3.1), and

σ̂(t, y) ≡
(

χ2 − ǫ

√

5

12
χ− 1

3

)

ln (X0 −X) ,

ω̂(t, y) ≡
(

1

3
− ǫ

√

5

12
χ

)

ln (X0 −X) ,

φ̂(t, y) ≡ (X0 −X)
ǫ
q

3
20
χ
, (5.2)

where ǫ = ±1.

5.1 The spacetime singularities in regions I − IV

To study the spacetime singularities in Regions I − IV , let us consider the quantity,

φ̂,aφ̂
,a =

3χ2B

20 (X0 −X)
4
5
+

“q

8
15

−ǫ
√

2 χ
”2 , (5.3)

where B is given by eq. (4.8). Comparing the above expression with eq. (4.7), we find that

the spacetime in Regions I − IV is singular in the string frame whenever it is singular

in the Einstein frame, although the strength of the singularity is different, as can be seen

clearly from the following expression,

20
φ̂,aφ̂

,a

R
= (X0 −X)

ǫχ
q

64
15 , (5.4)

In particular, if ǫα > 0 the singularity in the Einstein frame is stronger, and if ǫα < 0 it is

the other way around.
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5.2 The spacetime on the 3-brane t = ay

On the hypersurface t = ay, the metric (5.1) reduces to

dŝ25
∣

∣

t=ay
= dτ̂2 − a2

u (τ̂) dΣ2
0, (5.5)

where

au(τ̂) =

{

a0 (τ̂s − τ̂)∆ , Φ2 > 0,

a0τ̂
∆
s , Φ2 < 0,

φ̂(1)(τ̂) =















[

β̂ (τ̂s − τ̂)
]ǫ

q

3
20

χ
δ
, Φ2 > 0,

(

β̂τ̂s

)ǫ
q

3
20

χ
δ
, Φ2 < 0,

(5.6)

with

X0 −X(1) =







[

β̂ (τ̂s − τ̂)
] 1

δ
, Φ2 > 0,

X0, Φ2 < 0,

Φ2|Φ1=0 =
a+ b

a
t, β̂ ≡ |a(a+ b)|√

a2 − 1
δ,

τ̂s ≡ β̂−1Xδ
0 , a0 ≡ β̂∆.

δ ≡
(

√

5

48
− ǫχ

)2

+
9

16
> 0,

∆ ≡ 1

δ

(

1

3
− ǫχ

√

5

12

)

. (5.7)

Note that in writing the above expressions, we had chosen ǫτ̂ = sign(a+ b). To study the

spacetime singularity on the brane, we calculate the Ricci scalar, which now is given by

R
(4)λ
u λ =

3∆ (2 − ∆)

2a0 (τ̂s − τ̂)∆+2
, (5.8)

where

∆ + 2 =
1

δ



2

(

ǫχ−
√

15

64

)2

+
115

96



 > 0,

∆ − 2 = −1

δ



2

(

ǫχ−
√

5

48

)2

+
19

24



 < 0. (5.9)

5.3 The spacetime on the 3-brane t = −by

Similarly, on the 3-brane located on the hypersurface Φ2 = 0, the metric (5.1) reduces to

dŝ25
∣

∣

t=−by = dη̂2 − a2
v (η̂) dΣ2

0, (5.10)
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where where

av(η̂) =

{

a0 (η̂s − η̂)∆ , Φ1 > 0,

a0η̂
∆
s , Φ1 < 0,

φ̂(2)(η̂) =







[γ̂ (η̂s − η̂)]
ǫ
q

3
20

χ
δ , Φ1 > 0,

(γ̂η̂s)
ǫ
q

3
20

χ
δ , Φ1 < 0,

(5.11)

with

X0 −X(2) =

{

[γ̂ (η̂s − η̂)]
1
δ , Φ1 > 0,

X0, Φ1 < 0,

Φ1|Φ2=0 =
a+ b

b
t, γ̂ ≡ |a(a+ b)|√

b2 − 1
δ,

η̂s ≡ γ̂−1Xδ
0 , (5.12)

but now we have a0 ≡ γ̂∆ and ǫη̂ = sign(a+ b). For the metric (5.10), we also find that

R
(4)λ
v λ =

3∆ (2 − ∆)

2a0 (η̂s − η̂)∆+2
. (5.13)

From eqs. (5.8) and (5.13) we can see that the spacetime on each of the branes is not

singular when ∆ = 0 or χ = ǫ
√

4
15 . As a matter of fact, in this case the spacetime on each

of the two branes is flat. Thus, in the following we need to consider only the case χ 6= ǫ
√

4
15 .

From eqs. (5.6)–(5.9) and eqs. (5.11)–(5.13), it can be shown that the spacetime singu-

larities on each of the two branes are similar to these in the Einstein frame. For example,

for the case a > 1, b > 1, it is singular at τ̂ = τ̂s and η̂ = η̂s, which correspond to,

respectively, the point A and B in figure 3. Similarly, the spacetime is free from any kind

of singularities for the case a < −1, b < −1, and the corresponding Penrose diagram is

also given by figure 13.

6 Colliding 8-branes in the 10-dimensional spacetimes

Lifting the metric to 10-dimensions, it is given by eq. (3.1), which can be cast in the form,

dŝ210 ≡ γabdx
adxb + φ̂2 (xc) γ̂ij

(

zk
)

dzidzj

= e2σ̂(t,y)
(

dt2 − dy2
)

− e2ω̂(t,y)dΣ2
0 − φ̂2 (t, y) dΣ2

z, (6.1)

where σ̂, ω̂ and φ̂ are given by eq. (5.2), and dΣ2
z ≡ ∑5

i,j=1 γ̂ij
(

zk
)

dzidzj . Then, it can

be shown that the spacetime in Regions I − IV is vacuum,

R
(A)
AB = 0, (6.2)

where A = I, . . . , IV , as it is expected. To study the singular behavior of the spacetime in

these regions, we calculate the Kretschmann scalar, which in the present case is given by

I10 ≡ RABCDR
ABCD =

B2I
(0)
10

(X0 −X)

“

2χ−ǫ
q

5
12

”2
+ 9

4

, (6.3)
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where B is given by eq. (4.8), and

I
(0)
10 ≡ 1

45

[

(

720χ6 + 1287χ4 + 200χ2 + 40
)

− 312ǫ

√

5

3
χ3
(

2 + 3χ2
)

]

. (6.4)

It can be shown that I
(0)
10 is non-zero for any given χ. Then, comparing the expression of

eq. (6.3) with eq. (4.7), we find that the lifted 10-dimensional spacetime has a similar sin-

gular behavior as that in the 5-dimensional spacetime in the Einstein frame. In particular,

it is also singular on the hypersurface X0 −X = 0.

On the hypersurface t = ay, the metric (6.1) reduces to

dŝ25
∣

∣

t=ay
= dτ̂2 − a2

u (τ̂) dΣ2
0 − b2u (τ̂) dΣ2

z, (6.5)

where au (τ̂) and bu (τ̂) ≡ φ̂(1) (τ̂) are given by eqs. (5.6) and (5.7). On the 8-brane, the

Einstein tensor has distribution given by eqs. (A.8) and (A.9). Inserting eq. (5.2) into

eq. (5.7), and noticing that ψ̂ ≡ ln
(

φ̂
)

, we find

ρ̂u =
b
(

a2 − 1
)

[

X0 −X(1)(t)
]µ ,

p̂Zu = − b
(

a2 − 1
)

[

X0 −X(1)(t)
]µ





(

χ− ǫ

√

4

15

)2

+
2

5



 ,

p̂Xu = − b
(

a2 − 1
)

[

X0 −X(1)(t)
]µ

(

χ2 +
1

3

)

, (6.6)

where X(1)(t) is given by eq. (5.7), and

µ ≡ 2

(

χ− ǫ

√

5

48

)2

+
1

8
. (6.7)

Clearly, whenever X0 −X(1)(t) = 0, the spacetime on the 8-brane is singular.

On the hypersurface t = −by, the metric (6.1) reduces to

dŝ25
∣

∣

t=−by = dη̂2 − a2
v (η̂) dΣ2

0 − b2v (η̂) dΣ2
z, (6.8)

where av (η̂) and bv (η̂) ≡ φ̂(2) (η̂) are given by eqs. (5.11) and (5.12). On this 8-brane,

the Einstein tensor has distribution given by eqs. (A.11) and (A.12), which in the present

case yield,

ρ̂v =
a
(

b2 − 1
)

[

X0 −X(2)(t)
]µ ,

p̂Zv = − a
(

b2 − 1
)

[

X0 −X(2)(t)
]µ





(

χ− ǫ

√

4

15

)2

+
2

5



 ,

p̂Xv = − a
(

b2 − 1
)

[

X0 −X(2)(t)
]µ

(

χ2 +
1

3

)

, (6.9)

– 27 –



J
H
E
P
0
4
(
2
0
0
9
)
0
3
8

where X(2)(t) is given by eq. (5.12). Thus, the spacetime on this 8-brane is also singular

whenever X0 −X(2)(t) = 0.

When a > 1 and b > 1, from eqs. (6.6) and (6.9) it can be shown that both of the weak

and dominant energy conditions [21] are satisfied by the matter fields on the two 8-branes,

provided that






− 1√
15

≤ χ ≤
√

2
3 , ǫ = +1,

−
√

2
3 ≤ χ ≤ 1√

15
, ǫ = −1,

(6.10)

but the strong energy condition is always violated. When a > 1 and b < −1, the matter

field on the 8-brane Φ1 = 0 violates all the three energy conditions, while the one on

the 8-brane Φ2 = 0 satisfies the weak and dominant energy conditions, provided that the

conditions (6.10) holds, but violates the strong one. When a < −1 and b > 1, it is the

other way around, that is, the matter field on the 8-brane Φ1 = 0 satisfies the weak and

dominant energy conditions, provided that the conditions (6.10) holds, but violates the

strong one, while the one on the 8-brane Φ2 = 0 violates all the three energy conditions.

When a < −1 and b < −1, the matter fields on the two 8-branes all violate the three energy

conditions. However, in all these four cases, the spacetime singular behavior is similar to

the corresponding 5-dimensional cases in the Einstein frame. In particular, in the first

three cases the spacetime in the four regions and on the 8-branes are always singular, and

the corresponding Penrose diagrams are given, respectively, by figures 3, 5, 7, 9, and 11,

but now each point in these figures now represents a 8-dimensional spatial space. In the

last case, in which the matter fields on the two 8-branes violate all the energy conditions,

the spacetime is free of any kind of spacetime singularities, either in Regions I − IV or on

the two 8-branes, and the corresponding Penrose diagram is given by figure 13. Therefore,

all the above results seemingly indicate that violating the energy conditions is a necessary

condition for spacetimes of colliding branes to be non-singular.

7 Conclusions

In this paper, we have first developed the general formulas to describe the collision of two

timelike (D-1)-branes without Z2 symmetry in a D-dimensional effective theory, obtained

from the toroidal compactification of the Neveu-Schwarz/Neveu-Schwarz (NS-NS) sector in

(D+d) dimensions. Applying the formulas to the case D = 5 = d for a class of spacetimes,

in section 3 we have obtained explicitly the field equations both outside and on the 3-

branes in terms of distributions. In section 4, we have considered a class of exact solutions

that represents the collision of two 3-branes in the Einstein frame, and studied their local

and global properties in details. We have found, among other things, that the collision in

general ends up with the formation of spacetime singularities, due to the mutual focus of

the colliding branes, although non-singular spacetime also exist, with the price that both

of the two branes violate all the energy conditions, weak, strong and dominant. Similar

conclusions hold also in the 5-dimensional string frame. This has been done in section

5. In section 6, after lifted the solutions to 10-dimensional spacetimes, we have found

that the corresponding solutions represent the collision of two timelike 8-branes without
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Z2 symmetry. In some cases the two 8-branes satisfy the weak and dominant energy

conditions, while in other case, they do not. But, in all these cases the strong energy

condition is always violated. The formation of spacetime singularities due to the mutual

focus of the two colliding branes occurs in general, although the non-singular cases also

exist with the price that both of the two branes violate all the three energy conditions.

The spacetime singular behavior is similar in the 5-dimensional effective theory to that of

10-dimensional string theory.

In this paper, we have ignored the dilaton Φ̂ and the three-form field ĤABC . It would

be very interesting to see how these fields affect the formation of the spacetime singularities.

In addition, it would also be very interesting to see what might happen if the branes are

allowed to collide more than one time.
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A Gravitational field equations in the 10-dimensional bulk and on the

8-branes

For the metric,

dŝ210 = e2σ̂(t,y)
(

dt2 − dy2
)

− e2ω̂(t,y)dΣ2
0 − φ̂2 (t, y) dΣ2

z, (A.1)

where

dΣ2
0 ≡

4
∑

p=2

(dxp)2, dΣ2
z ≡

5
∑

i=1

(

dzi
)2
, (A.2)

the non-vanishing components of the Einstein tensor are given by,

G
(10)
tt = 3ω̂,t (σ̂,t + ω̂,t) + 5ψ̂,t

(

σ̂,t + 3ω̂,t + 2ψ̂,t

)

− 3ω̂,yy − 5ψ̂,yy − 15ψ̂,y

(

ω̂,y + ψ̂,y

)

+σ̂,y

(

3ω̂,y + 5ψ̂,y

)

− 6ω̂2
,y,

G
(10)
ty = −3ω̂,ty − 5ψ̂,ty + 3 (σ̂,tω̂,y + σ̂,yω̂,t − ω̂,tω̂,y) + 5

(

σ̂,tψ̂,y + σ̂,yψ̂,t − ψ̂,tψ̂,y

)

,

G(10)
yy = −3ω̂,tt − 5ψ̂,tt − 15ψ̂,t

(

ω̂,t + ψ̂,t

)

+ σ̂,t

(

3ω̂,t + 5ψ̂,t

)

− 6ω̂2
,t + 3ω̂,y (σ̂,y + ω̂,y)

+5ψ̂,y

(

σ̂,y + 3ω̂,y + 2ψ̂,y

)

,

G(10)
pq = δpqe

2(ω̂−σ̂)
[

σ̂,yy + 2ω̂,yy + 5ψ̂,yy + 5ψ̂,y

(

2ω̂,y + 3ψ̂,y

)

+ 3ω̂2
,y

−
(

σ̂,tt + 2ω̂,tt + 5ψ̂,tt +3ω̂2
,t + 5ψ̂,t

(

2ω̂,t + 3ψ̂,t

))]

,

G
(10)
ij = δije

2(ψ̂−σ̂)
[

σ̂,yy + 3ω̂,yy + 4ψ̂,yy + 2ψ̂,y

(

6ω̂,y + 5ψ̂,y

)

+ 6ω̂2
,y

−
(

σ̂,tt + 3ω̂,tt + 4ψ̂,tt − 10 ψ̂2
,t + 6ω̂,t

(

ω̂,t + 2ψ̂,t

))]

, (A.3)

where p, q = 2, 3, 4 and i, j = 1, . . . , 5, and ψ̂ ≡ ln
(

φ̂
)

.
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A.1 Field equations on the hypersurface Φ1 = 0

Following section 3.2.1, it can be shown that the derivatives of any given function F (t, y),

which is C0 across the hypersurface Φ1 = 0 and at least C2 in the regions Φ1 > 0 and

Φ1 > 0, are given by eq. (3.32) but now with N being replaced by N̂ , and na and ua by,

respectively, n̂a and ûa, where

n̂a = N̂
(

δta − aδya
)

,

ûa = N̂
(

aδta − δya
)

,

N̂ ≡ eσ̂
(1)

(a2 − 1)1/2
. (A.4)

Hence, eq. (A.3) can be cast in the form,

G
(10)
ab = G

(10)+
ab H (Φ1) +G

(10)−
ab [1 −H (Φ1)] +G

(10)Im
ab δ (Φ1) , (A.5)

where G
(10)+
ab

(

G
(10)−
ab

)

is the Einstein tensor calculated in the region Φ1 > 0 (Φ1 < 0),

and G
(10)Im
ab denotes the distribution of the Einstein tensor on the hypersurface Φ1 = 0,

which has the following non-vanishing components,

G
(10)Im
tt = a2N̂

(

3 [ω̂n]
− + 5

[

ψ̂n

]−
)

,

G
(10)Im
ty = −aN̂

(

3 [ω̂n]
− + 5

[

ψ̂n

]−
)

,

G(10)Im
yy = N̂

(

3 [ω̂n]
− + 5

[

ψ̂n

]−
)

,

G(10)Im
pq = −δpqN̂−1e2ω̂

(1)

(

[σ̂n]
− + 2 [ω̂n]

− + 5
[

ψ̂n

]−
)

,

G
(10)Im
ij = −δijN̂−1e2ψ̂

(1)

(

[σ̂n]
− + 3 [ω̂n]

− + 4
[

ψ̂n

]−
)

. (A.6)

Introducing the unit vectors,

X(p)
a = eω̂

(1)
δpa, Z(i)

a = eψ̂
(1)
δia, (A.7)

we find that eq. (A.6) can be cast in the form,

G
(10)Im
ab = κ2

10



ρ̂uûaûb + p̂Xu

4
∑

p=2

X(p)
a X

(p)
b + p̂Zu

5
∑

i=1

Z(i)
a Z

(i)
b



 , (A.8)

where

ρ̂u =
1

N̂κ2
10

(

3 [ω̂n]
− + 5

[

ψ̂n

]−
)

,

p̂Xu =
1

N̂κ2
10

(

[σ̂n]
− + 2 [ω̂n]

− + 5
[

ψ̂n

]−
)

,

p̂Zu =
1

N̂κ2
10

(

[σ̂n]
− + 3 [ω̂n]

− + 4
[

ψ̂n

]−
)

. (A.9)
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A.2 Field equations on the hypersurface Φ2 = 0

Similarly, it can be shown that, crossing the hypersurface Φ2 = 0, eq. (A.3) can be cast in

the form,

G
(10)
ab = G

(10)+
ab H (Φ2) +G

(10)−
ab [1 −H (Φ2)] +G

(10)Im
ab δ (Φ2) , (A.10)

but now G
(10)+
ab

(

G
(10)−
ab

)

is the Einstein tensor calculated in the region Φ2 > 0 (Φ2 < 0),

and G
(10)Im
ab denotes the distribution of the Einstein tensor on the hypersurface Φ2 = 0,

which can be written in the form,

G
(10)Im
ab = κ2

10



ρ̂v v̂av̂b + p̂Xv

4
∑

p=2

X(p)
a X

(p)
b + p̂Zv

5
∑

i=1

Z(i)
a Z

(i)
b



 , (A.11)

where

ρ̂v =
1

L̂κ2
10

(

3 [ω̂l]
− + 5

[

ψ̂l

]−
)

,

p̂Xv =
1

L̂κ2
10

(

[σ̂l]
− + 2 [ω̂l]

− + 5
[

ψ̂l

]−
)

,

p̂Zv =
1

L̂κ2
10

(

[σ̂l]
− + 3 [ω̂l]

− + 4
[

ψ̂l

]−
)

, (A.12)

and

X(p)
a = eω̂

(2)
δpa, Z(i)

a = eψ̂
(2)
δia,

l̂a = L̂
(

δta + bδya
)

, v̂a = L̂
(

bδta + δya
)

,

L̂ ≡ eσ̂
(2)

(b2 − 1)1/2
. (A.13)
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